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FOREWORD

This handbook is the culmination of research
performed on the Covariance Analysis DEscrib-
ing Function Technique (CADETTM) during a two-
year period under Contract NG0014-73-C-0213,
for the Office of Naval Research. The Sci-
entific Officer who monitored and encouraged
this inv.stigation was Mr. David Siegel.
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ABSTRACT

l The Covariance Analysis DEscribing Function
Technique (CADETIM) -- a"technique conceived

' and developed .t TASC for the efficient direct
statistical analysis of nonlinear systems with
random inputs -- has been proven to provi‘re

I accurate tactical missile performance projec-
tions with a small fraction of the computer
time expenditure required for a comparably
reliable monte carloc analysis. This handbook

l is a self-contained, detailed exposition of
the application of CADET tc the missile-target
intercept problem. The broad scope of this

l document is intended to permit tre direct analy-
sis of a wide variety of ncanlinear and random
effects in missile guidrnce systems, and to
facilitate and encoursge the study of other non-

l linear systems via CADET.
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PROLOGUE AND I'EADER'S GUIDE

The development of a complex weapon system with stringent
performance specifications, such as a tactical missile, generally
requires several phases, including preliminary design and feasi-
bility studies, decisions conceraing implemen.vation of various sys-
tem functions, and compensation or design modi."'ication to obtain
the best possible system performance under realistic constraints.
In the later stages of develonment, the mathematical system model

used as a basis for generating system performance projections in-
evitably contains nonlinear efiects and random inputs. Nonline-

arity is generally associated with nonlinear relations inherent

essential design nonlinearities; random effects may include noise
(e.g., thermal effects), sensor mcasurement errors, random inputs

A g oot i

that contain infori.ation required by the system, and random ini- ﬁ
tial conditions. When random effects are significant, some sta- i
tistical measure of system performance is required; for example,
the root-mean-square (rms) miss distance achieved at the time of
target interception may be of interest in assessing the capability

e e TR ok Rt e M

of a tactical missile.

"The traditional approach used for the statistical analysis
of the performance of systems with significant nonlinearities has
been the monte carlo method. In this technique, a large number of
computer simulations (trials) are made using the required non-

linear model with different, randomly chosen, initial conditions
and random forcing functions generated according to given statis-
tics, The resulting ensemble of simulations provides the basis for

making estimates of the true system variable statistics. Asso-
ciated with the monte carlo method is the problem that a large

l to the laws of physics, unavoidable hardware nonlinesarities, and

- xiii
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number of trials is required to provide confidence in the accuracy i

5 of the results; an ensemble comprising as many as 1000 trials '
i : may be needed to obtain an accurate statistical analysis for
a nonlinear system. Thus, while the monte carlo method may
be useful for obtaining a few evaluations of a system's per- ;
formance, it is not a very satisfactory tool for conducting :
“ extensive sensitivity and tradeoff studies for different values
; i of the important system parameters, or for conducting detailed
F 5 studies of nonlinear effects on system performance, due to

-~ = g

the large expenditure in computer time required. ok

The limitations of the monte carlo approach for ob- i‘ i
taining performance projections for realistic nonlinear models

—

of tactical missiles strongly motivated the development of a .
more efficient analytic technique. The resulting method- .
ology, conceived by the technical staff at TASC, has proven -
i to be an exceptionally powerful means for directly evaluating ij
the statistical behavior of nonlinear systems with random ' o
inputs (Refs. 1 to 4). For reasons that will become obvious,
this method is referred to as the Covariance Analysis Deszribing !
function Technique (CADETTM). The purpose of this handbook is P
to present detajiled instructions tc facilitate the application !
of CADET in_studies of weapon systems performance. i ;

The scope and intent of this presentation is as follows:
Chapter 1 gives the theoretical devclopment of the basic equa-
tions of CADET, both for continuous-time and mixed continuous/
discrete-time systems. Chapter 2 provides a step-by-step exposi-
tion of tb~ CADET pro-edure, accompanied with computer flow-charts.

Chapter 3 is a comprehensive discussion of modeling nonlinear
effects in (he missile-target intercept problem; the purpose of
this material is threefold: to provide the basis for the examples
treated herein, to expedite future —~se of CADET in analyzing tac-

tical missile performance, and to provide some guidance in
/
/

Xiv
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modeling analogous phenomena that may occur in studying other
systems hgving similar nonlinearities. The theory and pracltical
application of quasi-linearization is treated in Chapter 4, exact
and approximate methods for calculating random input describing
functions are presented, accuracy of the quasi-linear approxi-
mation is considered, and some sensitivity issues are discussed.
Chapter 5 (blue pages) provides a broad overview of the application
of CADET to general problems -- touching upon philosophy of applica-
tion, assessments of the strong points and limitations of CADET, and

a comparison of the computational efficiency of CADET versus the
monte carlo method. Finally, threr appendices are included to
facilitate the use and evaluation of the CADET methodology: a
catalog of random input describing functions, a presentation of
extensions of CADET that permit the analysis of some unusual non-
linear effects that cannot be treated accurately by the standard
CADET methodology presented in Chapter 1, and a idetailed discus-
sion of the application and reliability of the monte carlo method.

The prerequisites for understanding this document are
introductory modern control theory (including the state-space
formulation of system models in terms of first-order vector dif-
ferential or differential/difference equations, and the asso-
ciated vector-matrix calculus), and elementary random process
theory. The contents of this handbook have been chosen to satisfy
the requirements of a somewhat diverse audience. For this rea-
son, readers of differing backgrounds and interests will find that
some sections are of greater utility than others. 1In the siuplest
case, i.e., the gpplication of CADET toc the missile-target inter-

cept problem treating only those effects discussed in Chapter 3,
the illustrative examples of Chapter 2 and the random input de-
scribing function catalog of Appendix A may suffice. For thosc
interested in the theory of quasi-linearization and CADET, Chap-
ters 1 and 4 should prove to be valuable adjuncts. 1In treating

situations that require the quasi-lineairization of nonlinearities

k.,.\..‘-._. S W RO SR AR T  PORPY S I R WPr SRIPe SET e
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not listed in Appendix A, the examples and princip;es given in

Chapter 4 establish the necessary starting point. Finally,

Appendix C on the monte carlo method provides discusstons of the

theory and application cf the technique (and of its potential ;
pitfalls in the analysis of nonlinear systems), and estaklishes

tlie context for comparisons between monte carlo simulation results

and CADET.

1T s - p——

e X R

While the primary thrust of CADET development thus far
has been the extension and refinement of an efficient tool for
? the statistical evaluation of the performance of missile guidance
systems, the overall scope of CADET is evidently much more general.
The system model based on a nonlinear state vecter differential/ ’
i
[
|
|

i o e e

difference equation with random inputs is of broad generality,
being descriptive of many continuous and discrete-time systems
with random disturban-.es. The specific nonlinear effects dis-

, cussed herein are by no means restricted in occurrence to the

! missile-target intercept problem. It is hoped that the success

} of the research presented here and in Refs. 1 to 4 will encourage
o her applications of the CADET concept.
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1. THE COVARIANCE ANALYSIS DESCRIBING

FUNCTION TECHNIQUE (CADET)

The Covariance Analysis DEscribing function Technique
(CADETTM) is a method for directl: determining the statistical
properties of solutions of noniinear system with random input:,
recently conceived and developed at The Analytic Sciences Corpo-
ration (Refs. 1 to 4). The principal advantage of this technique
is that it greatly reduces the need for monte carlo simulation,

thereby achieving substantial sa:ings in computer processing time,

We [irst motivate the discussion by reviewing the covariance
analysis method for linear systems; then we develop an analogous
procedure (CADET) for the nonlinear case.

1.1 COVARIANCE ANALYSIS FOR LINEAR SYSTEMS

The dynamics of a linear continuous-time stochastic sys-
tem can be represented by a first-order vector differential equa-
tion in which x(t) is the system state vector and w(t) is a forc-
ing function vector,

x(t) = F(t) x(t) + G(t) w(t) (1.1-1)

where we assume that F(t) and G(t) are continuous with respect to
t; Fig. 1.1-1 illustrates the equation. The state vector is ccm-
posed of any set of variables sufficient to describe the behavior
of the system completely. The forcing function vector w(t)
represents disturbances as well as control inputs that may act
upon the system. In what follows, the forcing function w(t) is

R P SIS i
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R-hes2

j’ X

F(t)

Figure 1.1-1 Representation of the Continuous-Time
Linear Dynamic System Equations

essumed to be composed of a mean or deterministic value b(t) and
a random component u(t), the latter being comprised of elements
which are uncorrelated in time; that is, u(t) is a '"white noise"
process having the spectral density matrix Q(t). Thus w(t) is
specified by* .

w(t) = b(t) + u(t)

E [w(t)] = b(t) (1.1-2)
E [g(t) g"'-(r)] = Q(t) 8(t-1)

Similarly, the state vector has a deterministic component m(t)

and a random part r(t); for simplicity m(t) will generally be
called the mean vector. The state vector x(t), then, is described
statistically by its mean vectcr and coviriance matrix,

x(t) = m(t) + r(t)
(1.1-3)

m(t) = E [x(t)]

*

E denotes ensemble expectation, or average value; a super-
script T denotes the transpose of a vector or matrix; 8(t-t)
is the Dirac delta function.

1-2

N

-

| GUE N S S G S da SR snuts SR St e e




T Ty T T T T TR IO T R v T e s = T OETTET YT LT TRy e TR T e "
e 4
b ~ -
{

THE ANALYTIC B8CIENCES CORPORATIOIN

i“

I
|
|
i
[
|
i
[
[

N

3
¥
=
L
N

T W K WY T LT T T

O e T

[
I
l
l
I
|
I

P(t) = E [g(t) ET(t)J (1.1-3)(Cont)

Henceforth, the time dependence of the variables w, b, u, Q, x,
m, r and P will not be explicitly denoted by (t). unless required

for clarity.

The differential equations that govern the propagation
of the mean vector and covariance matrix for the system described
by Eq. (1.1-1) can be derived directly, as demonstrated in Ref. 5,
to be

m=F(t) m+G(t) b
(1.1-4)

P = F(t) P + PFI(t) + G(t) QGI(t)

The firsi and second momeiuts of the system response are completely
determined by integrating the above vector and matrix differontial
equations, Eq. (1.1-4), when the initial conditions, m(0) and
P(0)*, are specified. The elements of m represent the effects of
deterministic initial conditions and biases due to determin-

istic system inputs (b # 0). The diagonal elements of P are

the mean square values of the random components of the state
variables, and the off-diagonal elements represent the

degree of correlation between the randcem components of the

various state variables.

Equation (1.1-4) provides a direct method for analyzing
the statistical properties of 5{ This is to be contrasted with
the monte carlo method, where many sample trajectories of X are
calculated from computer-generated random noise and initial con-
ditions, using Eq. (1.1-1). The moments m and P are then esti-
mated by averaging over the ensemble of trajectories generated in
the monte carlo procedure. Note that Eq. (1.1-4) leads to exact

*”
The initial time can be taken to be t = 0 with no loss in
generality.

1-3
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solutions for m and P, to within computer integration accuracy,
whoereas the monte carlo method yields approximate solutions for
any finite number of simulations. Furthermore, the mean and co-
variance equations need be solved only once over the time interval
of interest, whereas Eq. (1.1-1) must be solved repeatedly using
the monte carlo technique; consequently the direct analvtical

method is not only exact, but is also generally the most officient

technique for analyzing linear systems. With this observation as
motivation, we proceed to describe a methodology waereby the sta-~

tistics of a nonlinear syste. can be computed approximately using
recursive relationships similar in form to those of linear co-
variance analysis, Eq. (1.1-4); the monte carlo method is treated
in greater depth 1n Appendix C.

1.2 COVARIANCE ANALYSIS FOR NONLINEAR SYSTEMS

Ti:e wonlinear counterpart of Eq. (1.1-1) treated in this
presentation is

X = f(x,t) + G(t) w (1.2-1)

Figure 1.2-1 depicts this equation. The input and state vectors
are again characterized by the quantities b, Q and m, P, respec-
tively, given in Egs. (1.1-2) and (1.1-3).

R-11802

1€

NONLINEAR
FUNCTICN

Figure 1.2-1 Nonlinear System Block Diagram
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It may seem restrictive to have the random inputs enter
the system differential equation linearly as in Eq. (1.2-1).
However, if a system is of the form

X = f(x,y,t) (1.2-2)

and y is a correlated random process that can be represented as
a random vector satisfying

= £ (y.t) + G (t) w (1.2-3)

where w is the sum of suitable vectors of deterministic variables,
b, and white noise processes, u, we can rewrite Eq. (1.2-2) using
the augmented state vector x.,

as

[ £(x4,1) r o
..... i I [._..-__ w (1.2-4)

Observe tkat y is thus considered to be a component of the state

vector, comprised of '"noise states'. Th'’s procedure places the
apparently more general problem of eEqs. (1.2-2) and (1.2-3) in
the format grven in Eq. (1.2-1); since all physically realizable
random processes arc correlated, the assumptica that y is de-
scribed by Eq. (1 « 3) is not particularly restrictive. For con-

venience we thus consider Eq. (1.2-1) to be the basic system
model, with no significant loss in generality.

The statistical differential equations that correspond
to Eq. {1.1-4) can be shown to be (Ref. 5)

1-5
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- .

mo= E{ 2(x.0)] + GO

">
-

?+ G(t)b (1.2-5)

,.__.,_.
- | —

b aE [_r_ 5"‘] + 8 [;_- £7] + aceracTce;

The first equation is the direct analog of the mean differential

i equation of Eq. (1.1-4), since we observe that i is simply F(t)m ‘

i in the linear case. The nonlinear covariance equatiorn can be

i represented in the same format as indicated in Eq. (1.1-4) by E
defining the auxiliary matrix N,

S

e AT T T S

Np & E [g(;,r) IT] (1.2-6)

R o

Then Eq. (1. -5) may be written as

| o= 2+ G(t)D I
- (1.2-7) |
: * -

| B« NP+ PN' + G(t)QGT(t) ]
b

\

: \ The vrelation in Eq. (1.2-68) generally provides an explicit defi- [}

| | nition of N,

f N=E [g(g,c) ET] p-1 (1.2-8)

l

1

T
e

since P is usually positive definite* and thus a unique P~
exists.

FOETTET ST e e

The derivation of Eq. (1.2-5) is based directly on the
principles of covariance analysis, Ref. 5. We cbserve, however, )3

R i

*Often the initial condition P(0) is only positive semi-definite,

in which case the pseudolnverse of P(0) could be used in Eq.(1.2-8).
F As shall be shown subsequently, Eq. (1.2-8) is only formal, in the

' sense that it is almost never used to evaluate N (refer to Xq.

| (1.2-10) and Section 4.1).
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that the vector I and matrix N defined in Eqs. (1.2-5) and (1.2-6)
are identical to the quantities which provide a minimum mean nquare
error quasi-linear approximation to _the nonlincarity f(x,t). It
cen be shown (refer to Section 4.1) that the approximation

I(x,t) & £+ N(x - m)

with i and N specified by Eqs. (1.2-5) and (1.2-8) yields the best
linear approximction in the sense that

e ® f(x,t) - £ - N(x - m)

satisfies the condition
T
E [g Sg] = minimum

for any positive semi-definite matrix S. The intimate relation
between the well-established describing function theory (Ref. 6)
and Eq. (1.2-6) has permitted the rapid development of an approxi-
mate nonlinear covariance analysis technique based on Eq. (1.2-7)
called CADET -~ the Covariance Analysis DEscribing Function Tech-
nique. Henceforth, we shall refer to i as the expectation vector

and N as the quasi-linear system dynamics matrix.

I ——C——

The quantities i and N defined in Eqs. (1.2-5) and (1.2-6)
must be determined before we can procead to solve Eq. (1.2-7).
Evaluatinag the indicated expected values requires knowledge of the
Joint probability density function (joint pdf) of the state vari-
ables. While it is possible, in principle, to evolve the n-

R ar e

dimensional joint pdf p(x,t) for a nonlinear system with random
inputs by solving a set of partial differential equations known

as the Fokker-Planck equation or the forward equation of Kolmogorov
(Rer. 5), this procedure is generally not practically feasible.

The fact that p(x,t) is not available precludes the exact solu-
tion of Eq. (1.2-7).
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One proccedure for obtairing an approximate soluvion to
Fq. (1.2-7) is to ussume the form of the joiat probability den-

~

sity function of the state variables ir urder to evaluate f and N

according to Eqs. (1.2-5) and (1.2-8). Although it iy possible
to use any Jjoint pdf, all of CADET development to date has been
based on the assumption that the state variables are jointly
normal; this choice was made because it is both reasonable and
vonvenient.

While the above assumption is strictly true only for
linear systems driven by gaussian inputs, it is often approxi-
matcly valid in nonlinear systems with nongaussian inputs. Al-
though the output of a nonlineaiity with a gaussian input is
gencrally nongaussian, it is known from the central limit theorem

that random processes tend to be made gaussian when passed through

low-pass linear dynamics ("filtered'"). Thus, we rely on the
linear part of the system to insure that nongaussian noi:linearity
outputs result in nearly gaussian system variables as .ignals
propagate through the system. By the same token, if there are

nongaussian system inputs which are passed through low-pass linear

dynamics, the central limit theorem can again be invoked to jus-
tify the assumption that the state variables are approximately

Jointly normal. The validity of the gaussian assumption for non-
linear systems with gaussian inputs has bheen extensively studied
and verified; nongaussian random inputs have not been considered.

From a pragmatic viewpoint, the gaussian hypothesis serves
to simplify the mechanization of CADET significantly by permitting

each scalar nonlinear relation in f(x,t) to be treated in isola-

tion, with i and N formed from the individual random input describ-

ing tfunctions (ridf's) for each nonlinearity. Since ridf's have

been catalogued in Ref. 6 for several classes of nonlinearities
encountered in a broad spectrum of practical problems, the

e
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implementation of CADET is a straightforward procedure for the
analysis of many nonlinear systems. We also note that, under the
gnussian assumption, the random input describing functions can

be calculated directly from the mean vector, m, and the covartiance

matrix, P, of the system state vector. Thus, we write i and N
in the form

L =T1Tmp,t)
(1.2-9)
N = N(m,P,t)

As a corollury to the above observations, we have the rosult
(Ref. 7) that

N(m,P.t)

d -
am L (1.2-10)

Since calculating i is required for the propagation of the mean
(Eq. (1.2-7)), it is generally much easier to employ Eq. (1.2-10)
than to evaluate N directly using EqQq.(1.2-6). Quasi-linearization

and the random input describing function are treated in some
dotail in Chapter 4.

Relations of the form indicated in Eq. (1.2-9) permit
the direct evaluation of z and N at each integration step in the
propagation of m and P, as illustrated in Fig. 1.2-2. We note
that the dependence of i and N on the statistics of the state vec-
tor is due to the existence of nonlinearities in the system. With-

out nonlinear effects, the propagation of the mean and covariance
is "uncoupled,'" as in Eq. (1.1-4).

To demonstrate the ease with ~hich CADLT can be mech-
anized under the gaussian assumption, we consider a low-order sys-
tem model for the missile~target intercept problem Laving a s’ngle
nonlinearity in Section 2.2. All of the steps involved in per-
forming statistical analysis via CADET are illustrated in detail.

1-9
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‘ Figure 1.2-2 Nonlinear Covariance Analysis -- CADET
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-
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A comparison of quasi-linearization with the classical

Taylor series or small-signal linearization technique provides a 1!
great deal of insight into the success of the ricf in capturing
the e¢ssence of nonlinear effects. Small-signal linearization for
a scalar nonlinear element f(x) is based on the identification of
a nominal operating point (in this context, the mean value of x,
denoted mx) and the evaluation of the slope of the nonlinearity
at that value; then the approximation is made that :

T I T e T T R

| f(x) = f(myg) + £'(my) (x = my) (1.2-11)

which represents the first two terms of a Taylor series expan-

sion about the given operating point, as illustrated in Fig. 1.2-3 }
for the example,y = x3. While this is a useful approach if excur-
sioas from the nominal are small, the validity of the Taylor series 3
approximation is questionable when x is a random variable which can |

exhibit large variations about its mean value.

1-10 .
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R-16236
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Figure 1.2-3 Taylor Series Linearization of
y = x3 about my =1

g T

By contrast, the quasi-linear representaticn of a non-
linearity is sensitive to the input amplitude in some sense; in
the case of random inputs, the statistics m =E [x] and
p, = E [(x-mx)zj provide the measure of input amplitude. For the
example y = x3, where x is a gaussian random process, we calculate
the desceribing functions in Section 4.3 (Eq. (4.3-7)) to be

- >
]

(pr + mi) my

3(pu * )

s0 the nonlinearity is approximated by

SUl G g G PN gl g @ Suy ey ) R YW TN WD B

=]
[}

e P R R T TR G T T T, Al - Benadhi 4o

RSLPRRr PRI

x3 (3px + mi) m_ + 3<px + mi) (% - my) (1.2-12)

Wt Frwden g, e

Comparing Eqs. (1.2-11) and (1.2-12), we see that the describing
*

e e i

function gains™ depend on both the mean and variance of x, as
indicated in Fig. 1.2-4, while the coefficients in the Taylor

series approximation do not.

*
In treating single-jinput nonlinearities, it is sometimes con-
venient to consider f/myx to be the mean component '"gain'.

1-11
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Quasi- Linearization for mya

Quaosi-linearization for my =1
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Taylor Series Linearization obov"mxn ' '

Toylor Series Linearization about m =1

; 0 1 - 0 1 i . .
] 0 1 2 p, 0 1 2 p, LY
; (a) Mean Component Gain (b) Random Component Gain ¥
& f Figure 1.2-4 Quasi-Linearization of y = x° for .

Unity Input Mean i

T -

C 1.3 CONTINUOUS/DISCRETE-TIME SYSTEMS

Preceding sections of this chapter have treated continuous-

: ' time nonlinear systems; i.e., those that are governed by differen- P
v tial equations. However, in many practical applications, the sys- }&
4 tem may include a digital computer whose operations are expressed 1
F in terms of difference equations, as illustrated in Fig. 1.3-1. {J

Such a structure arises in missile guidance systems when digital

control laws are used to generate acceleration commands, for ex- |é
ample. In this section, equations are briefly developed for propa-
gating the mean and covariance of a nonlinear, mixed continuous/ fi
discrete system. Systems which are wholly d.screte can be treated z
as special cases of the following discussion.

The equations of motion for a system of the type shown in
Fig. 1.3-1 are expressed in mixed differential/difference equation
format. In the continuous-time phase (between sampling instants,
tg, k= 1,2,...) the digital computer is inactive, and the state

. Srarer

variables of the system satisfy an equation of the form

1-12
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N 1
CONTINUOUS - TIME
RANDOM INPUTS l
CONTINUOUS
DYNAMICS
CAMPLER
DIGITAL T,
HOLD [
COMPUTER
OMPUTE DISCRETE-TIME
RANDOM INPUTS

.

Figure 1.3-1 An Example of a Mixed Continucus/

Discrete System

X f (x,t) + G (t) w (t)
5 - -:-— B st T o ’ tk < t 5_ tk+1
X4 [
(1.3-1)

where gc(t) refers to the continuously-varying states in the sSys-
tem, and §d(t) is a collection of discrete-time states (e.g.,
states in the digital computer) which remain unchanged between

the sampling times. Under the assumption that the state variables
are jointly normal, the statistics between sampling instants can
be propagated using a straightforward extension of the standard
CADET equations (Eq. (1.2-7)) as follows:

. tmro] [e ) b,
o= el oL Ll MRpE.
o Y
(1.3-2)
5 GQGl ! o
N.(m,P,t)
b L2 p W ey | oof e Sl O |
0 : l o 1 o
by <2t
!
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where Nc is the quasi-linear system dynamics matrix for the i1
’ 1

1

i

continuous-time state variables, defined by

A T ]
N, = E [ic(é,t) r ] !

e e T P

1}
g which is of dimension (n, x n); n is the total number of state i
' variables and n, is the number of continuously-varying states.

; The continuous-time vector of white noise processes wqo(t) is !;
f described statistically by the mear vector gc and spectral o
: }
? density matrix Q, as before (refer to Eq. (1.1-2)). 1!

Observe that describing functions for a nonlinear time- 13
§ invariant function of gaussian discrete-time states alone need tl
; not be evaluated continuously since the statistics of the

discrete-time states are constant in the interval tk <t <t ?}

- k+1-
T As a special case, if

fo(x,t) = £, (x,.t) + £, (x4) (1.3-3)

C C

1

then Nc may be partitioned into two parts,

No(m,P,t) = [Ncl(mc'pcc't)chz(md’Pdd)] (1.3-4)

e T T, [T W e S T Y e Y O T e, T T T e

wiaere m and P are correspondingly partitioned into
- (1.3-5)

Since my and Pdd are constant during the continuous-time phase,
the matrix Ncy is also constant.

At a sampling time, tk+1' the digital computer performs
a calculation which can be represented as a difference equation,

i i i ada) bt s Ah e o b o bk oAl et S m A e R A G - R s,
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!
|

R .

Xty X (tgey) 0

e Il SET TR anpal ) S (1.3-6)
X3 (tyep) LR (S RANTL Cs 1% 41

where the superscript (+) denotes the new values of the state
variables just after a sampling instant.* The vector Wit
represcents a discrete-time random quantity that can enter the
digital calculation as a result of sensor measurement noise,quanti-
zation, etc. It is assumed that We4+q has a mean of b, ., and a
covariance matrix Qk+1' Observe that in Eq. (1.3-6) Xc remains
unchanged, since variables that satisfy differential equations
cannot change instantaneously in time. Situations where it is
reasonable to assume that a continuous-time variable can change
"almost instantaneously' as a result ot a digital operation can
be treated by decomposing that variahle into components that are
strictly continuous (an element of Xx,) and digital (an element

* —-—
of §d), so the condition that 5c(tk+1) = §c(tk+1) represents no
loss in generality.

Because the mean and covariance of Xe fnd Xq at t,, are
known from Eq. (1.3-2), the expectation vector gd and quasi-linear
system dynamics matrix Ng corresponding to gd in Eq. (1.3-5) can
be evaiuated. Thus we can rewrite the discrete-time part of Eq.
(1.3-6) approximately as

~

+ . A r ’
Xg(tger) = Lg * Ng Li(tk+1) - m(tk+1)] b Ogpa¥er (1.3-7)

From Eq.(1.3-7) it follows that the mean and covariance of the sys-
tem states just after the discrete~time caiculation are given by

*

The discrete-time operation actually takes place between tyg4q and
tk+1 + €. In this discussion it is assumed that ¢ is negligible in
comparison with the time-scale of the continuous-time dynamics,

although finite computational delays can be treated in a straight-
forward manner.
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‘_
4 Mo Clga) = B (lyyq)

+ ~
mg(tyer) = f4
§
N ' . )
I | o0 I 0 0
U I S G R R B R kbt
k+1 v d '
Na 0 [© 1 Ok+1%+1%+1
-
i (1.3-8)

. ) . , + + . s
After cvaluating Eq. (1.3-8), m(tk+1) and P(tk+1) are the initial

conditions for propagating the mean vector and covariance matrix

over the next continuous-time phase using Eq. (1.3-2). Thus by
alternately implementing the continuous-time and digital mean
veetor and covariance matrix propagation equations, Egs. (1.3-2)

and (1.3-8), the performance of a nonlinear system described by

G s SN o it O et A i
" e T i A . A e AT

a mixed differential/difference equation can be evaluated.

The developments discussed in this chapter provide the

necessary tools for analyzing the perlformance of a broad class of
nonlincar systems with random inputs. The efficiency realized by
f CADET has made it an attractive technique for performing sensi-

' tivity studies and investigations of the impact of nonlinear
effeets on the accuracy of tactical missile guidance systems; it
is anticipated that CADET will prove to be equally powerful in

TS TETI AT EIE T TR T T A TR S

treating other nonlinear systems.
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2. CADET APPLICATION: SIMPLE ILLUSTRATIONS |

In this chapter we demonstrate many of the details that
are involved in the application of CADET to a practical problem
involving the statistical evaluation of the performance of a non-
linear system with random inputs. Simplified formulations of the
missile-target intercept problem are treated, with guidance modules
that are either analog or digital; the corresponding CADET equa-
tions are obtained; and their solution -- to establish the evo-
lution of the system variable statistics during a given scenario --
is outlined in computer flow-chart format.

2.1 MISSILE-TARGET EQUATIONS OF MOTION

This secticn treats “he basic differential equations
describing the motion of a tactical missile and a target to be
intercepted. In subsequent sections, examples of two types of
guidance modules are considered -- continuous-time (analog) and
discrete-time (digital) -- to provide the basis for detailing the
C ‘DET mcthodology, both for systems represented entirely by dif-

‘2rential equations and for systems describcd by mixed differential/
difference equations. In order to obtain a system model which is
simple enough to permit a clear presentation of the step-by-step
procedure entailed in the use of CADET, we reduce the planar
missile-target intercept problem to its bare essentials. Chapter 3
provides a more detailed discussion on modeling the missile-target
intercept problem; here we present only a summary of the required
dynamic equations.

The ccordinate frame and the basic variables are por-
trayed in Fig. 2.1-1. Here we consider variations about a head-on

2-1
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Figure 2.1-1 Missile-Target Planar Intercept Geometry

! intercept, i.e., the missile lead angle, 02, and target aspect

angle, ea, are assumed to be small. For the purpose of illustra- i
ting the mechanizatior of CADET, we make the followirg approxi-

oy

mations based on small-angle assumptions: gl
t!

‘ ® The down-range separation, x, and missile-~-

\
j : target range, r, are deterministic, given {;
t ' approximately by
!
% ; x(t) & r(t) & (v +v )(T-t) ]
Lo (2.1-1) If
8
(vm+vt) tgo '
wheie¢ T is the nominal terminal time (time of }j

intercept), tgo is the time-to-go, and vp and
vt are the constant missile and target velocity
magnitudes, respectively. .

% ® The lateral or cross-range separation, y, is

1 determined by the missile and target lateral -
( accelerations, ay and at respectively, as +n !
\ Eq. (3.5-14)

i V& a -a (2.1-2)

f ® The autopilot and airframe dynamics are repre-

sented by a linear plant, modeled by a transfer
function with a single dominant pole at s=-1/7,

L TR i e e ik A b smdanicmribia ; bt s 2l S f sl ke e s ¢ e s - e e AM“J
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followed by an ideal limiter, to model the air-
frame saturation effect. Thus the unlimited
missile lateral acceleration ¥, satisfies the
differential equation

1

1 L)
a’m +?zm" T % (2.1-3)

where ac is the acceleration command generated
by the guidance module, and the limited value,
am, is given by

T ’ Izhl Z %max
am = f(8p) = (2.1-4)

amaxsign(ﬁh), |18 ] > a

m max

e The target acceleration, ai, is the sum of a
deterministic variable and a band-limited
gaussian process satisfying

ét +w, a, = w(t) (2.1-5)

t 7t

where w¢ is the target maneuver bandwidth. The
random input w is described by

E [w(t)] = b(t)
[ ] (2.1-6)
E [(w(t)-b(t))(w(T)-b(T1))] = a(t) &(t-1)

where b is the deterministic component of the
input and q is the spectrsal density of the white
noise process, w - b,

Given the preceding simplified equations of motion, we complete
the missile-target intercept model by considering simple examples
of the two basic classes of guidance modules: continuous-time and
digital.

2.2 THE CONTINUOUS-TIME CASE: PROPORTIONAL GUIDANCE

The acceleration command dictated by the classical pro-
portional guidance law (refer to Section 3.5.1) is given by

a, = n' v, ] (2.2-1)
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wherc n' is the ‘navigation ratio (a constant, here taken to be 3), |
Ve I8 Lthe closing velocity, which in the present scenario is
approximately given by the sum of the missile and tarret veloci- \
ties, -

Q - .
Ve r(t)/tgo v, tov, (2.2-2) t
and § is the angular rate of the line-of-sight (LOS)(Fig. 2.1-1).

Using the assumptions made in Section 2.1, Eq. (2.2-1) can be
reformulated to yield the approximation

% a_ & t“' (§ + fl—) & 3<9 + ;2-) (2.2-3)

¢ *gol go gO

where B denotes n'/-rt80 for notational simpliciity. The complete
system model based on the foregoing assumpticns and development
¥s portrayed in Fig. 2.2-1.

R-18234

PROPORTIONAL GUIDANCE

=== “|
| |
RANDOM w B . - |
INF-UT ] i lm '
i
| -
om*f{Tm) 1 L
STATE VARIABLES: |
I, L Yy ) ) l ’
SRR/ __4‘:_:.',}4: L loc |
» Gman lesr 1 too
- xq* '3',“ = l
I‘ L 0' L ________ _J
Figure 2.2-1 Simplified Missile-Target Intercept

Model With Continuous-Time Guidance
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The state vector differential equation associated with
Fig. 2.2-1 is given by

{37 [ o 1 0 0 [0 [0
%, 0 0 0 +1 -1 0
X = = x + f(xa) + w(t)
3 B/tg, B -1/t 0 0 )
_*44 L 0 0 0 -wt‘ ..OJ 1 i
 Fx + df(xg) + g w(t) (2.2-4) F

From the statistics of the input to the limiter,

m, = E [x3]

(2.2-5)

2 2
Ogq = E [rs]

we can directly 2valuate the scalar random input describing func-
tions (ridf's) used in the quasi-linear representation for the
limiter f(x3),

£ ENE AV A e £ 52 0 AN

4 EIE GID ON o) Pug e ey ) g N W oy N N O D BB &

f(xg) & [ + nrq (2.2-6)

R S

as derived in Example 3 of Section 4.3:

a +m a -m
a = P <_m_x___§.)+p1<_mez*__3>_1

‘3 / 3
' (2.2-7)
) a . +mg\ a___-m
} =g G( max "3} _ . <_max 3) o m
3 [ Y / Oq 3

The functicns G(v) and PI(v) are defined in Eq. (4.3-13); they
are the standard functions used in quasi-linearizing piecewise-
linear elements (Ref. 6). Many computer scientific subroutine

T e e et Y
| s s : ) Almamad s P _ - PP U _L*MM_J
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puckages have available the subroutine "ERF(v)'"., {n which
case

PI(v) = § (1 + ERF (%»

_%v

2 (2.2-8)

G(v) = vPI(v) +

1
/2n

permits direct calculation of f and n. Given the two constituents
of the quasi-linear representation of the limiter indicated in
Eqs. (2.2-6) and (2.2-7), we substitute into Eq. (2.2-4) to get

i = Fm + gf

[0 (2.2-9)

0

1
0

B/tge B -1/1 0O
o

- Y t -
Finally, from the input statistics, b and q, tke dif-
ferential equations and initial conditions that approximately
govern the propagation of the state vector deterministic com-~
ponent ('"'mean") and covariance matrix are given by Eq.(1.2-7):
h=f+ghb; m(0) = m,
(2.2-10)
= T T =
P=NP+PN +ggaq; P(C) = P,
The CADET methodology utilizes the preceding relations to deter-
mine the time histories c¢f the mean vector, m, and covariance
matr.x, P, over the¢ duration of an ensemble of engagements
(0 <t <T). Any standard numerical integration technique may

then be uczd to solve Eq. (2.2-10)." The structure of a computer
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program to carry out the CADET analysis of tactical missile per-
formance is indicated in Fig. 2.2-2.

The results of a CADET and monte carlo statistical anal-
ysis of the performance of the preceding missile guidance system
(obtained from Ref. 1) are depicted in Fig. 2.2-3. 8ince the rms
lateral separation between the missile and target is of primary
importunce in assessing tne ability of the missile to intercept
the target, only that variable is portrayed. The white noise in-
put spectral density, q, was chosen to be a constant yielding an
rms target lateral acceleration of 160 ft/sucz, the bandwidth w
was assumed to be 1 rad/sec, and the autopilot time constant T

was taken to be 1 sec. All initial conditions (mp and Pg) were

t

Zero,

This missile performance study considered three levels

responding to an infinite acceleration command limit is shown;
here, CADET reduces to the standard linear covariance analysis
{(Section 1.1) which is exact, and the 200-trial monte carlo
analysis provides an adequate approximation to this result. For
the study of Fig. 2.2-3b, the restriction that the missile lateral
acceleration cannot exceed 322 ft/sec? leads to a five-fold in-
crease in oy at the terminal time, here taken to be 10 sec. the
CADET and monte carlo aporoximate solutions are in good agree-
ment. Even in the case where the missile lateral acceleration
constraint is very severe (apay = 32.2 ft/sec2), causing a further
l.rge decrease in missile capability as shown in Fig. 2,2-3c, the

CADET solution is verified by the monte carlo analysis.

Thus we observe that the direct statistical analysis via
CADET, implemented according to Fig. 2.2-2, quite accurately cap-
tures the effect of a significant nonlinearity in the missile-
target intercept problem, This invoestigation is performed with
an expenditure of computer time that is a small fraction

{ of airframe saturation. In Fig. 2.2-3a, the linear case cor-

.
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INITIAL
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R.16257

mo. Po. o}

CALCULATE
SSCRIBING

. JNCTIONS
Eq. (2.2-7)

T

EVALUATE
f(m,P), N(m,P)
Eq. (2.2-9)

¥

EVALUATE

o, P
Eq. (2.2-10)

v

PROPAGATE:
m(t) > mt+At)
P(t) > P(t+At)

BY NUMERICAL
INTEGRATION

YES

UPDATE
t=t+At

END

Flow Chart for the Direct

Statistical Analysis of a

Continuous-Time System

via CADET
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Figure 2.,2-3 Performance Projections for Various Levels
of Airframe Acceleration Saturation

(approximately 1/100) of that required for an accurate monte carlo
study. Furthermore, the effect of decreasiig missile performance
caused by airframe saturation is completely beyond the scope of
linear covariance analysis, which requires the small-signal line-
arization of the saturation nonlinearity, i.e. replacing f(X3)

by a unity {inear gain, regardless of the saturation level. Con-
sequently the small-signal linearization approach completely ob-
scures the nonlinear effect and leads to a quite over-optimistic
prediction of missile performance when compared to a more realistic
assumption -- e.g., that ap cannot exceed 322 ft/sec?, as evident
in Figs. 2.2-3a and 2.2-3b.

2-9
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2.3 GUIDANCE SYSTEMS WITH DIGITAL DATA PROCESSING

In some guidance systems, discrete-time measurements of
certain system variables are made available to a computer for
data processing purposes; acceleration commands are then calcu-
f ; lated (in an on-line mode by use of a suitable algorithm) which J
: : are used to control the missile. In this presentation, we assume

-; that the available signal is a noisy sampled measurement of LOS {
f angle, 06, so we have the sequence of values given by '

. t.
Z, ek + Vi k=1,2,... (2.3-1)
at the sampling instants, tk = krs, where Ty is the sampling

|

|

|

|

§ period. The zero-mean white noise sequence, Vi is quantified
)

!

1

by its variance
2 _ 2
o, = E [Vk] (2.3-2)
Generally, the random effects modeled by this sequence 1include

S external inputs (e.g., jamming) and measurement error. In light
- of the small angle conditions, we use the approximation

6 = y/r 8 xr (2.3-3)

where r is deterministic, given by Eq. (2.1-1), and X4 is the |-
state variable representing y, Fig. 2.2-1, 4

Based on the information provided by the measurement
sequence z,, the computer algorithm is often of the form

PRSP CPI P .. TS ST

+ —
§d(tk) = Fd,k §d(tk) + Ekzk (2.3-4)

;
[ . s M i J
P SRRSO /S il L RN L L o ddha e s cade e n Lo b e ekt ). pre—— PRSRRTUS
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(cf. Seétion 3.5.2 for the design of a ghidance modu?v’hhsnd on
the Kalman filter and optimal control theory) where X4 it the
vector of digital states, comprised of variables which are stored
in memory and up-dated according to Eq. (2.3-4) as each new mea-
surement z, is made and processed. The matrix Fd,k and vector
Ek' which may vary from one digital operation to the next, are
specified by the filter algorithm. The difference equation,

Eq. (2.3-4), in combination with the initial condition x4, deter-

mines the time-histories of X4

A typical control law (again, refer to Section 3.5.2)
then specifies an acceleration command, a, given in Eq. (2.1-3),
that is a linear combination of the digital states,

T + + :
a, = cp X4(t), tey 2t <ty (2.3-5)

This relation completes the des: “iption of the overall system
model, depicted in Fig. 2.3-1.

R-16229
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The mixed continuous/discrete-time system depicted in
Fig. 2.3-1 and represented by the total state vector

x' = [zz f §g] (2.3-6)

satisfies a differential/difference equation of the form treated
in Section 1.3. Corresponding to this division of state vari-
ables into continuous-time and digital states, we have

P ) 2

m. ‘ cc : cd
ms=|-——-- . P = e, il et (2.3-7)
LU pcd : pdd

The nonlinearity f(#,) given in Eq. (2.1-4) falls in
the continuous-time dynamics; its argument is a continuous state
variable, Xg. Thus quasi-linearization proceeds as in Eqs.(2.2-6)
through (2.2-8). We can then determine the matrix Nc and vector
ic required for the propagation of m and P during the continuous-
time phase (Eq. (1.3-2)):

o1 o o ! o
00 -n 1 oT
N = == —— - ——
¢ 0 0 -1/t o | 1 T
- _"k_
o0 0 -u ! oT
- . (2.3-8)
[ m ]
. (my-1)
ic = T
(-mg+ey my)/T
L —wtm4 -

These quantities are all that are required for the propagation
of m and P between sample times according to Eq. (1.3-2),

R TR B u PR VR PP R T8 i meoh Al « S SOy SR S SIS U U
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- -
) L [
‘l m B e o fe— b
: 9 0
! L~ (2.3-9)
' -
& Ne T ; B gT | 0 1
: P=---[P+P [N 'O |+ ]--=-4—--a
| 0 | ! o | o

where b and q are the deterministic component and the spectral
density of the random component of the random input, respectively,
as defined in Eq. (2.1-6), and g is given in Eq. (2.2-4).

In the present example, the digital operation taking
place in the infinitesimal interval (tk,t;) has been formulated
as a single linear time-varying difference equation, Eq. (2.3-4).
Recalling that

2, = Xy (t)/r(ty) + vy (2.3-10) H
we obtain
b
- . BEEEEN xo(ty) ?
+ | i |

X3(t) = |5ty K1 21 8V O Fy wl oot Ry
E d" *k r(ty) k== Tdk | k'k
i | ] | i =d" "k

(2.3-11)

>

No,x X(tk) + kv

The change in m and P during the digital phase of operation (as

4 EHE R G w s e W P DR M Y B Y M DY B e am

given in Eq. (1.3-8)) is then
N I, 0
- - omlr o on
m(tk) = m(tk) Nkm(tk)
d,k
(2.5-12)
o ! o
*y = T ———d o
P(tk) NkP(tk) Nk + ) :ozk kT
i V—k—k
2-13
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Implementation or the CADET equations given above (Eqs. (£2.3-9)
and (2.3-12)) is portrayed in computer flow-chart format in i
Fig. 2.3-2.

We observe that th2 difference equation satisfied by

, the digitul states is lineax time-varying, so the matrix Ng
; (Eq. (2.3-11)) contains no describing functions. If it is neces-
sary to include nonlinear effects in the discrete-time portion of |

; ? the system model, one must evaluate appropriate random input
describing functions to be substituted in the vector id and
matrix Nd (Eq. (1.3-7)),; some added complexity is entailed in [

r——1

this case.

The examples 7iven in Sections 2.2 and 2.3 illustrate
; the fundamentals involved in the application of CADET to pro-
' vide assessments of the performance of a tactical missile repre-

nonlinear effect. CADET has been successfully applied to system ¢
models of considerably higher order and complexity (refer, for
example, to Table 5.1-1). The flow charts shown in Figs. 2.2-2 !E
and 2.3-2 accurately reflect the methodology used in the more

1

f

i

L

r i sented by a simple low-order system model with one significant
;

{

b

!

5

y _
; complex problems. |
[ ;
k

Pl v 7R, e,

T
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Figure 2. Flow Chart for the Direct

Statistical Analysis of a Mixed
Continuous/Discrete~Time System
via CADET
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3. MODEL DEVELOPMENT FOR THE
MISSILE-TARGET INTERCEPT PROBLEM

This chapter presents mathematical models which describe
various subsystems required in treating the genrneral missile-
target intercept problem. The material included here summarizes
the nonlinear effects that have been treated in past CADET appli-
cations (Refs. 1 to 4). The aims of this presentation are to aid
future users of CADET in analyzing tactical missile performance,
and to provide some guidance in modeling analogous phenomena that
may occur in the simulation of other nonlinear systems with ran-
dom inputs.

3.1 ELEMENTS OCF THE MODEL

The overall interconnection of the subsystems which
comprise the missile-target intercept model is indicated in
Fig. 3.1-1. The principal variables are shown as outputs of the
appropriate blocks, and random disturbances are denoted W,
Detailed models underlying each input-output relationship are
given in subsequent sections of the chapter. Observe that the

models developed here are of considerably greater realism than

those used in the illustrative examples of Chapter 2, although
the basic closed-loop guidance system is of the same structure.

3.2 THE MISSILE-TARGET KINEMATICS MODEL

The missile-target engagement presented here is restricted
to the terminal homing phase in a planar intercept configuration.

F
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KINEMATICS

MISSLE LATERAL ACCELERATION, aypy,

TARGET LATERAL
ACCELERATION, 0,

MERGET | CONDITIONS I

Figure 3.1-1 Basic System Block Diagram

An inertial coordinate system is defined by the positions of the
missile and target at the initiation of the terminal homing phase
(taken to occur at t = 0); the missile is at the origin and the
line-of-sight (LOS) to the target defines the x-axis at t = O

(see Fig. 3.2-1). The coordinate frame moves with the missile,
without rotation;, by definition, we designate x and vy, respectively,
to be the instantaneous down-range and cross-range missile-target
separation. Expressing the separation in polar coordinates, the

relations
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define the instantaneous range and LOS angle of the target. The
angles ez (missile lead angle) and 9a (target aspect angle) spe-
cify the orientation of the missile and target velocity vectors

with respect to the x-axis, and eva defines the direction of the
missile acceleration vector with respect to the velocity vector;
by convention, ez.ea and eva are positive in the directions de-

fined in Fig. 3.2-1.

——— ..,
y -AXIS R-115924

{t=0) VELOCITY

% - AXIS
(tseg)

2 8,(t,)
- xlty) «™ \-\mcer TRAJECTORY
7 MISSILE TRA)ECTORY N
Lz ~

v - AXIS

ORIGINAL ORIGINAL LINE-OF-SIGHT (LOS) ORIGINAL (¢s0)

MISSILE TARGET
POSITION POSITION
Figure *.2-1 Target-Missile Planar

Intercept Geometry

In deriving the equations of motion, it can often be
assumed that the miusile and target velocity vector magnitudes
are constant, or, equivalently, that the missile and target
acceleration vectors are normal to the velocity vectors (e.g.,
eva is 90 degrees in Fig. 3.2-1). This condition, which neglects
the effect of drag, is representative of many missile-target
engagement situations during the critical last few seconds.

Under this assumption, the lateral acceleration of either vehicle
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produces a rotation of the corresponding velocity vector, given
by

.
8

5°|”
.

(3.2-1)

D
[ ]
<'l—‘
®

t

The equations describing the relative motion of the target are
determined by projecting the velocity vectors onto the axes

shown in Fig. 3.2-1; in terms of the velociiy magnitudes Vm and Vi

X = -V, C€OB (61) - v, cos (Ba)
(3.2-2)

Lo

- -V sin (el) + v, sin (ea)

Equation (3.2-2) represents the essential nonlinearities inherent
to the missile-~target kinematic relationship; the overall kine-
matic equations are portrayed in block diagram form in Fig.3.2-2.

R-11393

Oy o . > lon"(yll) )
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| i ANGLE

v, sin {«}
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Figure 3.2-2 Block Diagram Formulation of
Missile-Target Kinematics
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In situations where drag effects are not negligible, the
missile velocity vector magnitude will vary with time (according
to a nonlinear differential equation) due to the fact that a is
not normal to Vm (8ya ¥ 90 deg). Thus Vi Must be treated as a
state variable and the velocity vectnr rotation is given by the

nonlinear relation

L3 am
92 - ;; sin (Ova) (3.2-3)

This case is discussed in greater detail in Sectios 3.4,

3.3 THEE TARGET MODEL

The model representing the target behavior is based on
the assumption that the target velocity has constant magnitude
E with a direction described by the aspect angle, ea. shown in Fig.
3.2-1. The aspect angle is determined by the target lateral
l; accrleration, a,, as indicat.d in Eq. (3.2-1). A commonly-used
[
|

target maneuver model represents target lateral acceleration as

T e =

a correlated gaussian process derived from a gaussian white roise
input by one stage of low-pass filtering. 1In differential equa-
’ tion formulation, we have*

it = —w, B, + Wg (3.3-1)

This relation and the equivalent low-pass filter representation
are depicted in Fig. 3.3-1

l By adjusting the values of target maneuver bandwidth,
‘ Wy, and rms level, oat, a wide range of target maneuver charac-
L |

B e g e e E e iaca oo

teristics can be represented. The instantaneous target maneuver

-

x
The five white noise inputs to the system are simply Jdenoted
Wi, J=1,2,...,5, to correspond with Fig. 3.1-1,

TSI N R
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R-11007
(a} Dilferential Equation Representetion
{b) Transfer Function Formulation
Figure 3.3-1 Band-Limited Gaussian Noise Model

for Target Lateral Acceleration

rms level is determined by the spectral density, q5, of the rar-
dom input Wg and the initial condition on Cays for example, if
Ug is constant and

2 95 o
E [at(O) ] = z:)—t‘ (3.3-2)

then the rms level of the target acceleration is constant through-
out the engagement.,

oa, * /a5/20, (3.3-3)

It is important to note that the autocorrelation func-
tion and the corresponding power spectral density for a poisson
square wave -- 1.e., a square wave that switches between :tnatft/sec2
with random poisson-distributed switching times having an average
of wt/z zero-crossings per second (Ref., 8) -- are identical to
those of the above gaussian process, although the associated proba-
bility density functions are quite different. The poisson model
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is often used to represent target evasive or "jinking'" maneuvers.
The poisson square wave can only take on values of & Uag, SO at
any given time its probability density function (pdf) consists of
impulses with a weighting of 0.5 at plus and minus Oag whereas
the above markov process is assumed to have a gaussian amplitude
distribution. Therefore, the response of an amplitude dependent
nonlinear operator could be quite different wh~n driven by each
of these two signal forms. However, if the random square wave is
passed through a narrow-band filter or integrator, its pdf would
experience broadening due to the filter's finite bandwidth. 1In
the case of an integrator, for example, the resulting wave shape
would »e a series of linear segments of constant slope. By appli-
cation of the central limit theorem, as discussed in Ref. 8, the
distribution of the output of a linear subsystem approaches the
gaussian density function as the number of stages of filtering it
represents increases. In this case, the relative target position,
given by x and y in Fig. 3.2-2, are of particular interest in
assessing the performance of a tactical missile; these variables
are two integrations removed from a;. Thus, although the poisson
square wave may iu some situations be a more realistic target
maneuver model, we take advantage of the statistical similarity

of the gaussian process and the poisson square wave and the exis- 1
tance of kinematic dynamics to justify representing this random :
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effect by a band-limited gaussian process, which simplifies
CADET analysis.
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3.4 THE AUTOPILOT-AIRFRAME MODEL

In accorda.ce with the assumption that the missile and
target trajectories are confined to a plane, we describe the
missile airframe orientation by the variables depicted in Fig.
3.4-1. This figure establishes the sign convention of each guan-
tity; each va